	SHAY				т	hick	MOI Filn	DEL n Ch	CRO ip R	CW Resis	tors	
			FEA • In • Ai • Fi • Ti • W • In • O • U	FEATURES Internationally standardized size Automatic placement compatibility Flow solderable Thick film resistance element Wraparound termination Inner electrode protection Operating temperature range is - 55°C to + 150°C User-trimmable versions available				Overglaze Resistor Alumina Substrate Inner Electrode Nickel Barrier Solderable Coating				
STANDA	STANDARD ELECTRICAL SPECIFICATIONS					Γ	DIMENSIONAL CONFIGURATIONS					
	E-24		ANCE & TC RANGE E-96		Power Rating and Max.		[Numbers in brackets indicate millimeters]					
	±5%	±5%	±1%	±1%	Operating Voltage (@ + 70°C)		$\begin{bmatrix} & & \\ & $					
MODEL	±300 PPM/°C	±200 PPM/℃	±300 PPM/°C	±100 PPM/°C	(See derating	Zero Ohm Jumper	Δ	В	_* 	р	F	
CRCW 0402		10Ω to 1 Meg		10Ω to 1 Meg	1/16 W 50 V	.05Ω Max. 1 AMP Max.	.039 ±.002 [1.00 ±.05]	.019 ±.002 [.50 ±.05]	.014 ±.002 [.35 ±.05]	.008 ±.004 [.20 ±.10]	.010 ±.002 [.25 ±.05]	
CRCW 0603		10Ω to 1 Meg		10Ω to 1 Meg	1/16 W 50 V	.05Ω Max. 1 AMP Max.	.063 ±.006 [1.60 ±.15]	.031 + .006 002 [.80 + .15 05]	.020 ±.004 [.50 ±.10]	.012 ±.008 [.30 ±.20]	.012 ±.008 [.30 ±.20]	
CRCW 0805	1.0Ω to 9.1Ω and 1.02 Meg to 10 Meg	10Ω to 1 Meg	1.02 Meg to 10 Meg	10Ω to 1 Meg	(1/8 W)* 1/10 W 100 V	0.05Ω Max. 1 AMP Max.	.079 ± .006 [2.00 ± .15]	.049 ±.006 [1.25 ±.15]	.020 ±.006 [.50 ±.15]	.016 ±.010 [.40 ±.25]	.016 ±.010 [.40 ±.25]	
CRCW 1206	1.0Ω to 9.1Ω and 1.02 Meg to 10 Meg	10Ω to 2.2 Meg	1.02 Meg to 10 Meg	10Ω to 1 Meg	(1/4 W)* 1/8 W 200 V	0.05Ω Max. 2 AMP Max.	.126 ±.006 [3.20 ±.15]	.063 ± .006 [1.60 ± .15]	.022 ± .006 [.56 ± .15]	.020 ± .010 [.50 ± .25]	.020 ± .010 [.50 ± .25]	
CRCW 1210	3Ω to 9.1Ω and 1.02 Meg to 10 Meg	10Ω to 1 Meg	1.02 Meg to 10 Meg	10Ω to 1 Meg	1/4 W 200 V	0.05Ω Max. 4 AMP Max.	.126 ±.006 [3.20 ±.15]	.098 ± .006 [2.50 ± .15]	.022 ± .006 [.56 ± .15]	.020 ± .010 [.50 ± .25]	.020 ± .010 [.50 ± .25]	
CRCW 2010	3Ω to 9.1Ω and 1.02 Meg to 10 Meg	10Ω to 1 Meg	1.02 Meg to 10 Meg	10Ω to 1 Meg	1/2 W 200 V	.05Ω Max. 4 AMP Max.	.200 ± .006 [5.08 ± .15]	.100 ± .006 [2.54 ± .15]	.022 ±.006 [.56 ±.15]	.020 ± .010 [.50 ± .25]	.020 ± .010 [.50 ± .25]	
CRCW 2512	3Ω to 9.1Ω and 1.02 Meg to 10 Meg	10Ω to 1 Meg	1.02 Meg to 10 Meg	10Ω to 1 Meg	1 W 200 V	.05Ω Max. 4 AMP Max.	.250 ±.006 [6.35 ±.15]	.126 ±.006 [3.20 ±.15]	.022 ±.006 [.56 ±.15]	.020 ± .010 [.50 ± .25]	.020 ±.010 [.50 ±.25]	

* EIA Ratings are the lower ratings. Board layout and design must allow for aditional heat. Component temperature must not exceed + 150°C.

Vishay Dale 2300 Riverside Blvd., Norfolk, NE 68701-2242 • Phone (402) 371-0080 • Fax 402-644-4206 • Internet www.vishay.com Major Vishay Brands Dale • Draloric • Foil Resistors • Measurements Group • Roederstein • Sfernice • Sprague • Thin Film • Vitramon

MODEL CRCW

ENVIRONMENTAL PERFORMANCE									
	0402 and 0603	0805 th	iru 2512						
TEST	ALL TOLERANCES	±1% TOLERANCE	\pm 5% TOLERANCE	SPECIFICATION					
Thermal Shock	± (1.0% + 0.05Ω)	± (0.5% + 0.05Ω)	\pm (1.0% + 0.1 Ω)	EIA-575, Para. 3.5					
Short Time Overload	± (2.0% + 0.1Ω)	± (0.5% + 0.05Ω)	\pm (2.5% + 0.1 Ω)	EIA-575, Para. 3.7					
Low Temperature Operation	± (1.5% + 0.1Ω)	± (0.5% + 0.05Ω)	± (1.5% + 0.1Ω)	EIA-575, Para. 3.6					
High Temperature Exposure	± (1.5% + 0.1Ω)	± (1.0% + 0.05Ω)	± (1.5% + 0.1Ω)	EIA-575, Para. 3.8					
Moisture Resistance	± (1.0% + 0.05Ω)	± (0.5% + 0.05Ω)	\pm (3.0% + 0.1 Ω)	EIA-575, Para. 3.10					
Life	± (1.0% + 0.1Ω)	± (2.0% + 0.05Ω)	\pm (3.0% + 0.1 Ω)	EIA-575, Para. 3.13					
Effect of Soldering	± (1.0% + 0.05Ω)	± (0.25% + 0.05Ω)	\pm (3.0% + 0.1 Ω)	EIA-575, Para. 3.9					
Solderability and Leach Resistance	95% min. coverage of termination	95% min. coverage of termination	95% min. coverage of termination	EIA-575, Para. 3.12					
Termination Adhesion	0.5 kg min.	0.5 kg min.	0.5 kg min.	AXIAL PULL (soldered-on #26 nailhead lead with .037" [.940mm] dia. head)					

HOW TO ORDER

Vishay Dale 2300 Riverside Blvd., Norfolk, NE 68701-2242 • Phone (402) 371-0080 • Fax 402-644-4206 • Internet www.vishay.com Major Vishay Brands Dale • Draloric • Foil Resistors • Measurements Group • Roederstein • Sfernice • Sprague • Thin Film • Vitramon